| @技術/プログラミング

関連記事に画像を表示するようにして喜んでいたが、先月の AWS の請求額を見てビックリ。普段の 15 倍くらいの金額になっていた。デイリーの利用料金を見ると関連記事に画像を表示するようになった日から高くなっている。

CloudFront 転送量

このブログの画像は S3 に置いてあって CloudFront から配信している。これまでたくさん写真を掲載しても特にコストは高くなかった( Route 53 の費用など含めても $3 くらい、転送量だけだと $1.5 くらいだった)のが、転送量だけで $30 オーバーになっていた。ブログのサーバー代は Adsense 広告と Amazon アフィリエイトでまかなうつもりでやっているので、これでは完全に赤字になってしまう。

なぜ高くなったのかというと関連記事にサムネイル画像を表示することで、 imageproxy から CloudFront へのアクセスが発生するようになったからのようだった。こんな感じ。

image-data-transfer-infrastructure-1.png

imageproxy にもキャッシュの仕組みはあるが、 CloudFront が返す Cache Control ヘッダーの内容を理解せず決め打ちの時間でキャッシュを Expire させるので効率が悪い。

恐らく以下のように画像関連のインフラは AWS に寄せるのが一番効率的だと思う。Amazon の優秀なエンジニアが作ってる CDN が一番前段に出てブラウザーからのリクエストに答えるのがもっとも効率的に画像を配信できると思う。

image-data-transfer-infrastructure-2.png

ただ個人のブログレベルでここまでやるのは割に合わない感じがしたのでとりあえずは以下のような構成にした。

image-data-transfer-infrastructure-3.png

Nginx の proxy cache を使う。

キャッシュ時間は長めにとって 30d にしておいた。

あわせてキャッシュの HIT 率を計測するようにした。ログに $upstream_cache_status を書き出すようにして、 awk で定期的に集計するようにした。こんな感じ。

cat log/access.log \
  | grep 'cache_hit:' | grep -v 'cache_hit:-' | cut -f16 | sort | uniq -c \
  | awk '{
      if ($2 ~ /HIT/) {
        hit = $1
      };
      if ($2 ~ /EXPIRED/) {
        expire = $1
      };
      if ($2 ~ /MISS/) {
        miss = $1
      };
      sum += $1
    } END {
      hit_rate = hit/sum*100;
      expired_rate = expire/sum*100;
      miss_rate = miss/sum*100;
      print "HIT\t"hit_rate"%\nEXPIRE\t"expired_rate"%\nMISS\t"miss_rate"%"
    }'

こいつを Lokka の Dashboard に表示させる。

キャッシュヒット率

加えて、 Google の以下の記事を参考に、画像の遅延読み込みを行うようにした。

とりあえずはこれで様子を見たい。いまのところ、ちょびっとずつ転送量は下がってきているような感じがする。もうちょい下げたいところ。

しかし、画像の配信で毎月 $30 もかかるようであれば自前で画像をホストするのは諦めて Flickr に金払って PRO プランを継続した方が安いなと思い始めてしまった…。 Google Photos でも良いが、 Exif がわからなくなるのと埋め込み用の画像を取得する作業(公開用のアルバムを作ってそこに埋め込みたい写真を入れていく必要がある)が面倒くさいので移行に踏み切れない。

| @技術/プログラミング

Hot Chocolate @ Tana Cafe & Coffee Roaster

この記事は CircleCI Advent Calendar 2018 19 日目の記事ですが間に合わず一日遅れて書いております。すんません 🙇🏻

CircleCI を使った Rails アプリのデプロイフローみたいな話を書こうかなと思ったのですが、すでに他の方が書いてる内容とかぶりそうだし、自分自身ブログに過去何回も書いた話なんで今回はエモ方面の話を書くことにします。技術的な情報はないのでそっち方面を期待している方はすんません。


いまの職場で働き始めて 1 年半なんですが、当初は CI はなく、テストコードもありませんでした。いまはそこで当たり前のように CI が回り、テストのカバレッジもまぁまぁ高く、デプロイは CircleCI 経由でじゃんじゃん行われるような状況となっております。新しく会社に入った人も GitHub の Organization に入ってもらえたらその瞬間から deploy 実行できます。具体的な話は昔書いてますのでよかったらご覧下さい。

8 年くらい前の自分はどうやったら CI だとか自動デプロイだとかできるようになるのか皆目見当が付きませんでした。いま 8 年前の自分と同じような状況にいる人(回りにテストを書く習慣を持つ人がいない人、 CI 動かすためにどうすればよいかわからない人)に何か言いたいと思い筆をとりました。

まずは何はなくとも頑張って一つテストケースを書いてみましょう。最初からカバレッジ 100% とか目指さなくてもよいです。どれか一つ、テストが書きやすそうなコードを見つけてテストを書き、ローカルで実行してテストがパスするのを確認しましょう。テストファーストとかも最初から目指さなくてよいです。

手元でテストが通ることを確認したら、 CI 環境でもテストを実行できるようにしましょう。

昔は Jenkins しか選択肢がなく、 Jenkins が動く環境をセットアップする(サーバーを調達する、 VPS を借りてもらう、などなど)に社内調整が必要でしたが、 CircleCI ならプライベートリポジトリでも 1 プロセスなら無料で使えますので社内調整が非常に楽です(外部にコード出してはダメな職場だと厳しいですね…)。

最初にプロジェクトを追加して言語を選ぶと設定ファイルが自動生成されるので、それをコピペして .circleci/config.yml として保存し、リポジトリにコミットするだけでとりあえずビルドが実行されるようになります。

昔は難しかった CI 環境構築のうち、お金の問題、設定の難しさの問題を CircleCI は解決してくれます。あとはあなたが頑張るだけです。

CircleCI ならビルド終了ごとに結果を Slack などチャットシステムに通知させることができます。まずはテストケースが一つでもよいのでリポジトリへの push をトリガーにビルドが実行されたら結果を Slack に通知してみましょう。

CircleCI Slack Notification

CircleCI Slack Notification

リポジトリに GitHub を使っているなら Pull Request にビルド結果が表示されるようになるはずです。

CircleCI GitHub Build status

これらで「なんかようわからんけどやっとる感」を出していきましょう。

そして過去のコードのことは一旦無視して、あなたが新しく追加する部分に関してはテストコードをセットで書くようにしていきましょう。あなたがコードレビューを依頼するときには必ずテストがグリーンな状態で依頼するようにするのです。

そうこうしているうちに他の人が出した Pull Request でテストが失敗するケースが発生します。 Slack の #circleci チャンネルに赤色の Failure 通知が届き社内が騒然とするかもしれません。しかしこれはチャンスです。

「よかった、これでバグが未然に防げましたね」

あなたのこの一言でテストや CI がもたらす開発効率の向上がチームの皆さんに伝わるはずです。こうなったらもう一押しです。あなたがテストと CI の伝道師になりましょう。テストを書くことが当たり前になってきたら、 CircleCI からの deploy や定型処理を CircleCI でやらせるような使い方にチャレンジしていきましょう。どんどん周囲を巻き込んで、 CI 文化を定着させていって下さい。

何はともあれ、最初は一つのテストコードを書くことから始まります。変更に強いコードを書いてじゃんじゃん deploy し、じゃんじゃん Money making していきましょう🤑

| @技術/プログラミング

ジョブキューイングシステムをどうするかでチームのリーダーとやりあって考えたことがあるのでまとめておく。

Rails で使うジョブキューイングシステムの技術選定で、リーダーは Amazon SQS 推し(レガシーシステムで SQS を使っている)、自分は Sidekiq 推しだった。前職時代に Sidekiq を使ってトラブルに遭遇したことはなかったし、とても簡単に使えるので Sidekiq で十分だと思っていた。 Sidekiq は GitHub でのスター数は 9000 オーバーで、 Rails の ActiveJob バックエンドとしては事実上のデファクトスタンダードだといえると思う。ググれば情報がいっぱい出てくるし、チームメンバーもリーダー以外は全員 Sidekiq の使用経験があった。

リーダーが Sidekiq に反対する理由は以下だった。

  1. キューに可視性タイムアウトの概念がない( SQS にはある)
    ワーカーがキューメッセッージを取得したあと何らかの事情で一定時間内に処理を終えられなかった(ワーカーが突然死した場合など)未処理のジョブが再度ワーカーから見えるようになるので、ジョブの実行が保証される
  2. Redis が飛んだらジョブをロストする
    ElastiCache を使っているが、たしかに稀にメンテ祭などでフェイルオーバーが発生するなど困ることがあった
  3. Ruby 以外の言語から使えない
    Redis に書き込まれる情報は Sidekiq 専用フォーマットなので他の言語からも使う場合は読み取り君を作る必要がある

一方で自分が SQS に反対した理由は以下。

  1. 依存関係をソースコードに落とし込むことができない
    Sidekiq を使う場合は Redis と Sidekiq worker が動く Docker コンテナの情報を docker-compose.yml に書くことで依存関係を(バージョンまで含めて)宣言的に記述できる。 SQS の場合はそうはいかない。
  2. アプリケーションが AWS にロックインされる

    運用環境はすでにロックインされているが、アプリケーションが SQS という AWS のプロプライエタリな技術に依存すると、ソースコードが AWS と密結合になり他の IaaS に移行するときの障壁となる
  3. ローカル開発で利用することができない

    実際にローカル環境で非同期処理の検証不足が原因で機能の実装が漏れたまま production に deploy されたことが何度かあった。 localstack という AWS の機能をローカルに再現する技術はあるが、 SQS はオープンソースではないので完全に再現されるわけではない。

このような議論を経て、結局ジョブキューイングシステムには RabbitMQ を使うことになった。 RabbitMQ はリーダーが求める三つの要件を満たすし、オープンソースなので自分が SQS に反対する理由にも抵触しない。開発環境では Docker で RabbitMQ を動かし、 production では AWS にフルマネージドの RabbitMQ サービスはないので( ActiveMQ のマネージドサービス、 Amazon MQ というのはある)、 RabbitMQ の運用に特化した SaaS を利用することにした。

SQS に対する考えを整理する上で The Twelve-Factor App を改めて読んだが非常に参考になった。特に以下の三つの部分について、 SQS は Twelve-Factor App に反しており使うべきではないと思った。

II. 依存関係

アプリケーションが将来に渡って実行され得るすべてのシステムに存在するかどうか、あるいは将来のシステムでこのアプリケーションと互換性のあるバージョンが見つかるかどうかについては何の保証もない。アプリケーションがシステムツールを必要とするならば、そのツールをアプリケーションに組み込むべきである。

IV. バックエンドサービス

Twelve-Factor Appのコードは、ローカルサービスとサードパーティサービスを区別しない。アプリケーションにとっては、どちらもアタッチされたリソースであり、設定に格納されたURLやその他のロケーター、認証情報でアクセスする。Twelve-Factor Appのデプロイは、アプリケーションのコードに変更を加えることなく、ローカルで管理されるMySQLデータベースをサードパーティに管理されるサービス(Amazon RDSなど)に切り替えることができるべきである。同様に、ローカルのSMTPサーバーも、コードを変更することなくサードパーティのSMTPサービス(Postmarkなど)に切り替えることができるべきである。どちらの場合も、変更が必要なのは設定の中のリソースハンドルのみである。

X. 開発/本番一致

Twelve-Factor Appでは、継続的デプロイしやすいよう開発環境と本番環境のギャップを小さく保つ

たとえ理論的にはアダプターがバックエンドサービスの違いをすべて抽象化してくれるとしても、 Twelve-Factorの開発者は、開発と本番の間で異なるバックエンドサービスを使いたくなる衝動に抵抗する。 バックエンドサービスの違いは、わずかな非互換性が顕在化し、開発環境やステージング環境では正常に動作してテストも通過するコードが本番環境でエラーを起こす事態を招くことを意味する。この種のエラーは継続的デプロイを妨げる摩擦を生む。この摩擦とそれに伴って継続的デプロイが妨げられることのコストは、アプリケーションのライフサイクルに渡ってトータルで考えると非常に高くつく。

AWS の技術がどんなに優れていたとしても、自分はオープンソースではない AWS 独自のプロプライエタリな技術に依存してアプリケーションを作りたい訳ではない。運用の煩雑さ・手間から解放されたい、スケーラビリティを提供してほしい、というのが AWS に期待するところだ。 SQS はアプリケーションのソースコードの中に入り込んでくる。開発環境ではローカルの PostgreSQL 、 production では RDS の PostgreSQL インスタンスに接続先を変えるだけ、という風にプラガブルに切り替えることができない。開発効率性や移行可能性(ほかの IaaS に移ることができるか)を考えると、運用の効率性に特化して AWS を使いたいと思った。 Redshift とか DynamoDB とか Kinesis とか AWS の技術でしか実現できないことをやりたいときに手を出すのは悪くないと思うけど、AWS が提供するものなら何でも素晴らしいからすぐに飛びつくというのは間違っていると思う。

ちなみに CircleCI との距離の取り方はうまくいってると思う。いま deploy を CircleCI から行なっているが、 CircleCI が止まると deploy できなくなるのは困るので deploy 処理自体はシェルスクリプト化してある(👺 Hubot で Slack から AWS ECS にデプロイ)。 CircleCI が死んだら手元から deploy コマンドを実行するだけでよい。 CircleCI にやってもらっているのは、人間が手でも実行できることの自動化の部分だけだ。 CircleCI というサービスが終了したとしても恐らく簡単にほかのサービスに乗り換えられる。

まとめると、 IaaS / SaaS / PaaS を使う場合は以下に気をつけるべきだと思う。

  • ソースコードの中に特定のプラットフォームのプロプライエタリな技術に依存した部分が出てこないか
  • アプリケーションをローカル環境でも動かすことができるか
  • 運用やスケーラビリティに関してのみ依存するようにする
  • 人間が手でもできることの自動化のみに利用する

| @散財

契約中のサービス

Apple Music

何度も一ヶ月だけ契約して試しては解約し、を繰り返していたけど、 Circle 2018 に行ったあとに出てた人たちの音楽をまとめて聞きたくなって契約した。全部アルバム買うと 2, 3 万になるのがファミリープランでも 1480 円/月で済むのはいい。人間は音楽を買ってもそのうち聞かなくなる。聞きたい間だけお金を払うのが正解なのかもしれない。

ただ有名ミュージシャンの曲や懐メロのオリジナル版は相変わらず Apple Music にはなくて(カバーはいっぱいある)買わないといけないので注意が必要。ゴレンジャーの曲とか聖闘士星矢の曲のオリジナル版は iTunes Store で買った。

Spotify にしない理由は macOS や iOS との統合された使い勝手を重視しているから。たまに切り替えて使ってみるのもよいかもしれない。

Netflix

深夜食堂を見たくて入ってる。その他、アメリカのドラマも時々見る。電車の中で見たいけど結構エロシーンが多くて困る。イギリスのクッキング対決番組も面白い。とはいえ元とれてる感じはしないので Rebuild で話題になるドラマなんかをさっと見て解約したい。

Amazon Prime

Amazon のクレジットカード( Master )の特典で付いてくる。様々な割引を組み合わせたカードの年会費が 3940 円でプライム年会費と同じ。 Master カードはコストコでの支払いにも使えるようになったので便利。 1% ポイント還元。

Prime ビデオに関しては割と頻繁にラインナップの見直しあってて見たいやつがなくなるので見られたらラッキーくらいのつもりで利用しないと逆にストレス溜まる。

The Old Reader

RSS リーダーの中で最安なので使ってる。検索が厳しい。たぶん全文検索エンジン使ってなくて DB から LIKE サーチしてる気配を感じる。 Inoreader に乗り換えを検討した方がよいかもしれない( Feedly は好きになれない )。

さくら VPS 2GB プラン

このブログを動かしている。まぁまぁ高いが AWS や自宅サーバーで運用するのに比べたら十分経済的。

AWS

Route 53 と S3 、 CloudFront のみ利用している。 毎月 200 〜 300 円くらい。

解約したサービス

GitHub private repo

Microsoft に買われて自分ごときの金なしおじさんが利用料を払う必要もなかろうと思い解約。大したコード上げてなかった。秘密情報的なやつは GitLab に移した。

Flickr Pro

自己顕示欲を満たすために人に写真を見せる、ということがなくなったので解約しようと思っていたが、 2 年おきの更新なのでうっかりしてて 2020 年まで自動更新されてしまった。とりあえず自動更新を停止にした。

iTunes Match

Apple Music に移行したので自動更新を停止した。

| @ブログ

Facebook にウェブサイトの URL をはっつけるとき参照される HTML メタ情報の仕組みに Open Graph Protocol ってのがある。 Facebook に URL を貼ると bot が URL の内容を読みに行ってページの概要や画像を取得し Facebook 内に埋め込み表示するというもの。 Facebook を見ている人はリンク先の内容をクリックする前に概要を把握できるので、リンクをクリックして見たい情報じゃなかった、ということを避けられる。 Facebook が考案して策定した仕組みだけど、 Facebook に限らずいろんなサイトで OGP タグを出力してるし読み込んでる。 Twitter にも似た仕組みあって Twitter Card という。この辺の対応は結構前にやってた。

ただ自分のサイトが OGP タグを提供するだけではつまんないなと思ったので自分のブログにペロッと URL を貼ったときに相手先に OGP タグがあればそれを出力するようにしてみた。こんな感じ。

OGP Preview

しかしここで困ったことがあって、↑でリンクしてる Circle のサイトは HTTPS で配信されておらず、単純に Circle のサイトで og:image に指定されている画像を SSL 化されているこのブログで読み込むと Mixed Content になってしまう。せっかく HTTP/2 で配信していたのに台なしになってしまう。またそもそも og:image は Facebook でシャアされることを想定されていることがほとんどなので、画像サイズがデカすぎていい感じにスクエアに表示するためには CSS の小技を駆使したりする必要があった。

いい感じに解決する方法ないかなと調べていたら良いのが見つかった。

Go で書かれた Image Proxy Server で、 HTTPS Proxy は当然のこと動的リサイズもできる。使い方は簡単でバイナリを落としてきて動かすだけ。 Go なんで ImageMagick をどうしたりとかを考えなくて良い。 そもそも Docker イメージも提供されているので Docker をインストール済みなら docker run するだけでも動く。 めっちゃお手軽。

こいつのおかげで HTTPS で配信されていないサイトの OGP タグを読み込んでも Mixed Content にならずに済むようになった。また og:image は適切にリサイズできるようになった。画像変換サーバーとかは結構難しいやつで個人のブログでこんなに簡単に使えるものだとは思ってなかったので正直ビックリした。

AWS の登場で大企業じゃなくても CDN 使ったり仮想サーバーでウェブシステムを構築したりできるようになった。さらには Go や Docker といった技術のおかげで複数の込み入ったソフトウェアを組み合わせて構築していく必要があったシステムが、まるで jQuery を使うような感覚でポン付けで使える時代になってきている。とても素晴らしい。

ちなみに OGP の取得には open_graph_reader という gem を使っている(昔からある opengraph という gem はメンテナンスされておらず最近の Nokogiri で動かない)。 open_graph_reader の作者が結構 Opinionated な人で、以下のような Anti-featurs を掲げている。

open_graph_reader Anti-features

http://ogp.me/ の仕様に準拠していないサイトのことは完全無視というつくり。個人的にはこういう思想は好みだが、現実問題として使い勝手が悪い。例えば hitode909 さんのブログの OGP タグを取得しようとしたところ以下のようなエラーを出して取ってくれなかった。

スクリーンショット 2018-05-26 10.08.47.png

article:published_time は ISO8601 形式の datetime であるべき、とのこと。はてなブログはかなりシェアが大きくリンクする機会が多いので残念。

| @技術/プログラミング

GW 中、十分インスタンスを用意しておいたが想定を超えるアクセスがあって負荷が高まり、 Alert が飛んでくる事態となった。車を運転中に iPhone をカーステにつないでいたところ Slack がピコピコ鳴り、嫁さんから「休みなのか仕事なのかハッキリしろ!」と言われたので Alert が上がらないようにオートスケールを仕込むことにした。 いみゅーたぶるいんふらすとらくちゃー諸兄からしたら「そんなの常識じゃん」みたいな話ばかりだけど、自分でやってみて得られた知見をまとめておきます。

なおここで言っているのは EC2 インスタンスのオートスケール( EC2 Auto Scaling )であり、 AWS の様々なリソースを包括的にオートスケールする AWS Auto Scaling とは異なります。

オートスケールをやるにあたって必要なこと

1. インスタンス起動時に最新のコードを pull してきてアプリケーションを起動させる

オートスケールしてきたインスタンスだけコードが古いとエラーが発生する。

2. インスタンス停止時にアプリケーションのログファイルをどっか別のところに書き出す

Auto Scaling Group のインスタンスは Stop ではなく Terminate されるため、インスタンス破棄後もログを参照できるように S3 に上げるとかして永続化させる必要がある。 Fluentd や CloudWatch Logs に集約するのでも良い。

3. AMI を定期的にビルドする

オートスケール対象のアプリケーションは枯れていて今更新しいミドルウェアが追加されたりすることはなくてソースコードを git clone してくるだけで十分なのだが、 Gemfile に変更があった場合を想定して少しでもサービスインを早めるため( bundle install を一瞬で終わらせるため)、 master ブランチへの変更が行われなくなる定時間際のタイミングで Packer でビルドして AMI にプッシュするようにしている。

4. Launch Configuration を自動作成

AMI のプッシュが成功したら最新の AMI を利用する Launch Configuration を作成し、 Auto Scaling Group も最新の Launch Configuration を参照するように変更する。 AWS CLI でできるので自動化してある。

5. Auto Scaling Group の設定をいい感じにやる

Auto Scaling Policy を決め( CPU 使用率が一定水準を超えたらとか、 Load Balancer へのリクエスト数が一定以上になったらとか)、時間指定で Desired Count や Minimum Count を指定したければ Schedule をいい感じに組む。 AWS Management Console 上でポチポチするだけでよい。

6. deploy 対象の調整を頑張る

当初は Auto Scaling Group のインスタンスには deploy を行わない(業務時間中はオートスケールしない、夜間と土日だけオートスケールさせる)つもりだった。

autoscale-day-and-night.png

しかしメトリクスを確認すると朝の通勤時間帯や平日の昼休み時間帯などにもアクセス数が多いことがわかったので一日中 Auto Scaling Group インスタンスを稼働させることにした。となると deploy 対象が動的に増減する、ということなので Capistrano の deploy 対象もいい感じに調整しないといけない。 AWS SDK Ruby で稼働中の EC2 インスタンスの情報はわかるので、 deploy 時には動的に deploy 対象を判定するようにした。

autoscaling-all-day.png

本当は push 型 deploy をやめて pull 型 deploy にするのがナウでヤングなのだろうが、レガシーアプリケーションに対してそこまでやるのは割に合わない。そのうちコンテナで動くもっとナウでヤングなやつに置き換えるのでこういう雑な対応でお茶を濁すことにした。

注意点

冒頭に書いているけどあくまで上記は EC2 インスタンスの Auto Scaling であり、周辺のミドルウェアは Scaling されない。例えば RDS を使っていたとして、 RDS インスタンスの方は拡張されないので Connection 数が頭打ちになったり、 CPU を使うクエリが沢山流れたりしたらそこがボトルネックになって障害になってしまう。周辺ミドルウェア、インフラ構成に余力を持たせた状態で行う必要がある場合は AWS Auto Scaling の方を使うことになると思う。

所感

1 と 2 のステップはすでに実現できていたので、自分は 3 、 4 、 5 、 6 をやった。オートスケール、めっちゃむずかしいものというイメージを持っていたけど、まぁまぁすんなり行った(二日くらいで大枠はできて、連休後半には実戦投入した)。負荷に応じて EC2 インスタンスがポコポコ増えて、週末の夜にパソコンを持たずに出かけられるようになった。これで家庭円満です。

| @技術/プログラミング

以前、 AWS ECS で試験運用したことがあったので Docker 化自体は済んでいた。 ECS などマネージドコンテナサービスを使わずに Docker 運用ができないか試してみた。

動機

関連記事の更新処理、諸々障害があって自動化できておらず、 DB を clone してきて手元で実行してサーバーにエクスポートするという運用が続いていた。これを自動化したかった。

二つ問題があって、以下の通りだった。

  1. 関連記事の更新処理時に日本語の分かち書きをする必要があるが、 VPS インスタンスのメモリ上限があり MeCab の拡張辞書をサーバー上でインストールできない
  2. VPS 上で SQLite の算術計算を行うためには追加拡張が必要で、そのためには SQLite をソースコードからコンパイルする必要がある

1 は Docker イメージにして手元でイメージをビルドすれば解決できた。 2 の問題も Docker のなかでコンパイルを行うことで解決できた。

どうやるか

  • nginx.conf の修正
  • コンテナの create
    キャッシュのためにファイルシステムを利用しているのでホストとコンテナで public ディレクトリを共有する必要があった。
docker create \
  -e DATABASE_URL=db_url \
  -e RACK_ENV=production \
  -v /home/morygonzalez/sites/portalshit/public:/app/public \
  -p 3001:3001 --name portalshit -it morygonzalez/portalshit bundle exec puma -p 3001
  • コンテナの起動
docker start portalshit

結果どうだったか

サイトを Docker で公開することはできたが、 docker create して docker start するまでの間、ダウンタイムが発生する。

ダウンタイムなしで deploy するためには deploy のタイミングで Nginx conf を書き換えて service nginx reload する必要が出てくる。個人のブログレベルでそこまでやりたくない。

コンテナを管理するサービス( AWS ECS や Kubernetes )があるんだったら Nginx conf の書き換えなどしなくてもいい感じに deploy できると思うが、こちらも個人のブログレベルで使うものではないと思った。

結論

  • サイトの deploy はこれまで通り cap で行い、 puma はホスト OS で普通に動かす(コンテナ化しない)
  • 関連記事表示のバッチ処理のみコンテナ化することにした